logoAICgris  RadioIconTop

Talento sinaloense en el CERN


Por Janneth Aldecoa

Culiacán, Sinaloa. 29 de agosto de 2016 (Agencia Informativa Conacyt).- Científicos de 29 países del mundo hacen equipo para recrear la explosión que dio vida al universo. Entre ellos se encuentran los mexicanos Gerardo Herrera Corral, doctor en física por la Universidad de Dortmund, y el doctor Ildefonso León Monzón, de la Universidad Autónoma de Sinaloa (UAS) y nivel II del Sistema Nacional de Investigadores (SNI). Ambos colaboran en el proyecto ALICE del Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), ubicado en la Organización Europea para la Investigación Nuclear (CERN, siglas en francés de Conseil Européen pour la Recherche Nucléaire).

cern head 829

León Monzón es responsable del detector ALICE (A Large Ion Collider Experiment), diseñado para la colisión de iones pesados. Las aportaciones de su equipo de trabajo lograron la prolongación de la investigación hasta el año 2022 y con ello la oportunidad de que cada vez más estudiantes de posgrado de la UAS puedan sumarse. Su equipo diseñó y construyó un detector denominado AD (ALICE Diffractive), que amplía la eficiencia del detector ALICE para un tipo de física al que se llama física difractiva.

Alumnos de la UAS participaron en el levantamiento de un Laboratorio de Electrónica de Circuito Impreso, y actualmente tres investigadores trabajan en el proyecto ALICE, junto a dos estudiantes del área de la Facultad de Informática, otro más del área de Electrónica y dos estudiantes más de posgrado en física; entre ellos, Solangel Rojas Torres y Juan Carlos Cabanillas Noris, del doctorado en la Facultad de Físico Matemáticas y de Ciencias de la Información de la Facultad de Informática de la UAS, respectivamente. Sus tesis de maestría y doctorado han encajado con las líneas de investigación del proyecto ALICE Diffractive.

Solangel Rojas Torres

Solangel Rojas Torres estudiante en el CERN 2Solangel Rojas Torres.Estudia el doctorado en la Facultad de Físico Matemáticas de la UAS. En 2013, mientras cursaba el segundo grado de maestría, recibió la invitación de León Monzón para sumarse al trabajo en la parte de detectores.

Al principio, señala el estudiante de 28 años, no tenía una idea clara sobre el Gran Colisionador y comenzó a estudiar todo lo relacionado con el experimento.

“Fue algo muy duro. Conocía a grandes rasgos lo que era el Gran Colisionador de Hadrones, pero tenía unas ideas bastante erradas. Comencé a leer sobre lo que era, busqué documentos técnicos y literatura científica. Me di cuenta que era algo totalmente diferente a lo que yo me esperaba. Fue algo duro integrarme a todo esto”, comentó.

Solangel confesó haber imaginado que el Gran Colisionador era una especie de túnel, donde se encontraba el acelerador circular, y que técnicos, científicos e investigadores trabajaban siempre dentro de él, a 100 metros bajo tierra.

“En realidad no es así. Sí existe el túnel, pero solo los investigadores, la gente especializada en la parte del túnel trabaja ahí. Alrededor de todo eso hay una gran cantidad de cosas: sistemas y diversas áreas”, explicó.

Además, recordó, existen 19 detectores, cada uno integrado por múltiples especialistas —investigadores, teóricos, técnicos e ingenieros— de varios países.

La invitación a sumarse al proyecto más ambicioso del mundo, recordó, surge de forma natural, como una necesidad al formar parte de los proyectos en los que se involucró, pues durante sus estudios de maestría trabajó en la caracterización de materiales utilizados para la realización de detectores de radiación y que se utilizan con gran frecuencia en los detectores del Colisionador.

Su arribo al CERN fue en abril de 2014. La estancia fue de un mes. Acudió como apoyo de los doctores León Monzón y Herrera Corral para realizar un cambio de sensores del detector V0.

Los aportes al experimento ALICE

cern recuadro1.1 829El detector culminó en un año, por lo que el trabajo fue intenso. Solangel se sumó cuando este proyecto era apenas una propuesta.

“Había juntas donde se proponían materiales, geometrías y se discutía sobre la construcción. Después fue el tema de la construcción del detector. Mi aportación directa fue, en parte, en la construcción y en la instalación, con el doctor Ildefonso León y Juan Carlos Cabanillas, junto a ellos y otros colegas de Alemania, también del sur de Francia. El detector quedó instalado en diciembre de ese año”, comentó.

La tarea, recordó, no fue simple. Los sistemas y protocolos de seguridad requerían rigurosas planeaciones, debido a los tiempos limitados. Tenía apenas dos días para culminar cualquier proyecto. Su principal trabajo y aporte a este proyecto, añadió, comenzó en septiembre de 2015.

“Se sometió un prototipo del detector a un haz de partículas para estudiar su comportamiento de una forma más controlada. Tuvimos muchos resultados y datos. Trabajé directamente con los resultados de esta prueba: analizando el comportamiento del detector y entendiendo toda la información que arroja al experimento”, dijo.

Ese detector, indicó, fue diseñado para hacer estudios de física difractiva, el tipo de física que ocurre cuando dos partículas pasan entre sí, pero no colisionan.

“Es abrumador trabajar en un proyecto de tal envergadura. Al final te das cuenta de todo lo que aprendes. Te pones límites muy altos. He pensado seguir en esto, irme al posdoctorado. Cuando sea el momento lo buscaré. La investigación me gusta bastante”, expresó.

Juan Carlos Cabanillas Noris

Juan Carlos Cabanillas Noris estudiante en el CERN 3Juan Carlos Cabanillas Noris.Juan Carlos tiene 36 años, es estudiante del doctorado en ciencias de la información en la UAS. Fue invitado en 2014 por León Monzón a sumarse al Proyecto ALICE, en el área de Sistemas de Control, desarrollada durante un semestre. Su participación se encuentra en el detector número 19, mismo que busca expandir la lectura de eventos difractivos en colisiones plomo-plomo y protón-protón en el denominado Room 2, del LHC.

Fue en diciembre de ese año cuando fue instalado ese detector. Se denominó ADA. Realiza estudios para física difractiva. Consta de dos detectores instalados en los extremos del experimento, uno en el lado A (ADA) y otro en el lado C (ADC); ambos conforman el detector AD. Posterior a la instalación continuó la etapa de montaje de los subsistemas o sistemas en línea.

“Lo que hace es expandir el ángulo de seudorrapidez. Cuando internamente hay un choque de haces dentro del experimento, al chocar los 'bonches de haces' se genera una serie de partículas o de otros elementos. Muchos de ellos se expanden hacia los lados”, explicó.

Juan Carlos trabajó en conjunto con el doctor Mario Iván Martínez Hernández, de la Facultad de Ciencias Físico Matemáticas, de la Benemérita Universidad Autónoma de Puebla (BUAP), y con los doctores León Monzón y Herrera Corral.

A su llegada al Gran Colisionador, comentó, sabía que debía dominar el idioma inglés. Dedicó el semestre previo a su salida a Suiza a la lectura de artículos y libros sobre el proyecto. Conoció sus características, ubicación.

Su anteproyecto

Su objetivo consiste en desarrollar una parte denominada Detector Control System (DCS), que permite al detector AD trabajar de una manera segura, y que los datos que se obtengan como resultado de las colisiones o de la información que se está generando por parte del detector sea de la mejor calidad posible.

 Existen diferentes aplicaciones para el DCS, también permite la comunicación con otros subsistemas: la detección de datos directamente con el LHC, sistemas de energía, de refrigeración, control de acceso y seguridad.

“En esa parte se diseñó el sistema del DCS. Utilizamos un software que se maneja como estándar en los cuatro experimentos, en este caso un software de tipo SCADA, que significa supervisión, control y adquisición de datos (por sus siglas en inglés)”, dijo.

Se trata, explicó, de un software WinCC OA, de la compañía Siemens. Después del diseño del sistema para el detector, se generaron los paneles que utilizaría el usuario y se realizaron pruebas.

“Una vez que se tiene el prototipo del detector se hace la integración a un DCS central. Cada uno de los 19 detectores debe tener su propio DCS para controlar ese subdetector en específico”, dijo.

 

image icon01Descargar fotografías.

pdf iconVer texto en pdf.

 

Licencia de Creative Commons
Esta obra cuyo autor es Agencia Informativa Conacyt está bajo una licencia de Reconocimiento 4.0 Internacional de Creative Commons.



Agencia Informativa Conacyt

Acerca de ≈

¿Quién está detrás?

>  info@conacytprensa.mx

  • Teléfono (55) 5322 7700 ext: 1030
Algunos derechos reservados 2015 ®
Consejo Nacional de Ciencia y Tecnología
Conoce nuestras políticas de privacidad
logosfooter

México, CDMX

Av. Insurgentes Sur 1582. Delegación Benito Juárez 03940